US009323495B2

a2z United States Patent (10) Patent No.: US 9,323,495 B2
Petrik et al. (45) Date of Patent: Apr. 26, 2016
(54) DISPLAY, CLIENT COMPUTER DEVICE AND (56) References Cited
METHOD FOR DISPLAYING A MOVING
OBJECT U.S. PATENT DOCUMENTS
*
(1) Applicants:Sony Corporation, Tokyo (JP); Sony G333 I+ 02003 Badereral L 115761
Europe Limited, Weybridge (GB) (Continued)
(72) Inventors: Slavomir Petrik, Brussels (BE); Juan FOREIGN PATENT DOCUMENTS
Bernabeu, Auderghem (BE); Pascal
Piquepe, Hoeilaart (BE) P 2008-96756 4/2008
OTHER PUBLICATIONS
(73) Assignees: Sony Corporation, Tokyo (JP); Sony
Europe Limited, Weybridge (GB) iDisplay—Android Apps auf Google Play, https://play.google.com/
store/apps/details?id=com.idisplay.virtualscreen, Jan. 2, 2013, 5
(*) Notice: Subject to any disclaimer, the term of this pages.
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 334 days.
Primary Examiner — Antonio Xavier
(21) Appl. No.: 13/790,529 (74) Attorney, Agent, or Firm — Oblon, McClelland, Maier
& Neustadt, L.L.P.
(22) Filed: Mar. 8, 2013 (57) ABSTRACT
(65) Prior Publication Data A display apparatus for displaying a moving object traversing
a virtual display region comprises two or more client com-
US 2013/0241801 Al Sep. 19, 2013 puter devices each being configured to display a respective
portion of the virtual display region, in which each respective
(30) Foreign Application Priority Data portion is defined by a set of edges, each edge being classified
as a hard edge, from which the moving object is reflected, or
Mar. 16, 2012 (EP) 12159994 a soft edge through which the moving iject is allowed to
pass; and a path controller, associated with each client com-
(51) Int.CL puter device, for defining a path of the moving object with
GOG6F 3/14 (2006.01) respect to the portion of the virtual display region which is
G09G 5/14 (2006.01) displayed by that client computer device; the path controller
(52) US.CL being configured, when the path controller defines a path
CPC oo, GOGF 3/1423 (2013.01); GOGF 3/1446 which intersects a soft edge of that client computer device’s
(2013.01); GO6F 3/1454 (2013.01); GO9G 5/14 portion of the Virtue.ll disp}ay region, to transmit data deﬁqing
(2013.01); GO9G 2356/00 (2013.01); GOIG the path of the moving object for use at least by another client
2370/04 (2013.01) computer device which displays the next portion of the virtual
(58) Field of Classification Search display region which will lie within the detected path of the

None

See application file for complete search history.

moving object.

16 Claims, 17 Drawing Sheets

180

H \ /
4.
‘' Scene Scene 100
.. (ClientA) fImagef. | (Client B)
\\\\ // \\\\
4) H

US 9,323,495 B2

Page 2
(56) References Cited 2010/0125819 Al* 5/2010 Sudhakarccco... 715/867
2010/0194753 Al* 8/2010 Robotham et al. ... 345/428
U.S. PATENT DOCUMENTS 2010/0302129 ALl* 12/2010 Kastrupcccccoevenne 345/1.3
2010/0328447 Al 12/2010 Watson
6,795,055 Bl* 9/2004 Culler ..oooooovvevvvvevrnene.. 345/157 2012/0235924 Al* 9/2012 Hochmuthet al. 345/173
7,227,510 B2* 6/2007 Mayer et al . 345/1.1 2013/0050260 Al* 2/2013 Reitancccccovcvvvenenne 345/633
7,761,811 B1* 7/2010 Chaudhri 715/835
2003/0151588 AL* 8/2003 Rensberger 345/156 OTHER PUBLICATIONS
2006/0033712 Al* 2/2006 Baudischetal. GOGF 3/038 . . .
345/157 3D Virtual Worlds List, http://arianeb.com/more3Dworlds.htm, Jan.
2007/0073873 Al* 3/2007 Levyetal. ... 709/224 2,2013, 15 pages.
2007/0126748 Al* 6/2007 Jeffrey etal. 345/559 BZSQ-VW3D (BZSQVW3D): Product Overview: Sony Profes-
2007/0198706 Al: 8/2007 Mechelli et al. ... 709/224 sional, http://www.pro.sony.eu/pro/lang/en/lu/product/videowalls/
20080049743 AL* 22008 Zampett oo A0380 Csvaddloverview: fan 2, 013, | page, .
J002/0095068 AL* 4/2008 U;Talie L 370/252 “ArraySync Client”, Mac App Store—ArraySync Client, http:/
. . i e
2009/0027302 AL* 1/2000 Li ... 345711 i:tzélei.aggizcgm;mé:pp/arraysync client/id4159359697mt=12,
2009/0153475 Al* 6/2009 Kerr et al. 345/157 ed Sa %g ot issued .
2009/0295833 AL* 12/2009 Kim 345/660 Exter_l ed Search Report issued Jun. 20, 2013 in European Patent
2010/0030844 Al* 2/2010 Miyamaetal. 700/203 Application No. 13153341.6.
2010/0030850 ALl* 2/2010 Onjoccoevvvveieenecne 709/203 . .
2010/0111491 Al1* 5/2010 Kamotoc.ceo.... 386/66 * cited by examiner

U.S. Patent Apr. 26,2016 Sheet 1 of 17 US 9,323,495 B2

30

)

LWL WAV Y
AAVAWAY
ATAAWRY

FIG. 1
i
AN EEEEERRER
y A A A A B O I M WV

FIG. 2

90)=
l/III

s
/

20~

LOGO

50
40
H

E

E

U.S. Patent Apr. 26,2016 Sheet 2 of 17

US 9,323,495 B2

Canvas

’/

Scene Scene
(Client A) (Client B)

100

FIG. 3

Soft edge Soft edge

\

N

v
Scene \ Scene

(ClientA) -] (Client B)
~Jimage 110

d

Hard edges

FIG. 4

Edge bit pattern
1000

Scene
0001 (Client X) 0100

0010
FIG. 5

U.S. Patent

120~

Apr. 26,2016 Sheet 3 of 17 US 9,323,495 B2

140

H
ll ~~~~‘~

Scene (Client A)

/r80

Image el H

HIRN

Scene
.. (ClientA)

Scene

100
(Client B) 4

Scene
(Client A)

Scene
(Client B)

210

U.S. Patent Apr. 26,2016 Sheet 4 of 17 US 9,323,495 B2
230
10 20, \ {30
[SERVER] CLIENTB |---d--- v
g_/220
60
20, 20
CLIENTA CLIENT C
WIRELESS |,40,50
CLIENT D
FIG. 9
f30
250
L\
240 FIG. 10
1/330
270 290~ 310
CPU /o DISPLAY
IIF
260
H
280~ 300~ === ;
: LOCATION ! USER |r320
MEMORY . DETECTOR CONTROLS

U.S. Patent

US 9,323,495 B2

Apr. 26,2016 Sheet 5 of 17
Xl
‘\
Scene Y e Scene
(Client A) $ (Client B)
FIG. 12
X
o~~\
Scene
(Client B)
XD'— XD
2D

FIG. 13

US 9,323,495 B2

Sheet 6 of 17

Apr. 26,2016

U.S. Patent

vl

005 !

- !

§6S+] pawiod m

00f© Y65\ [7101080

Ajowos) €659~

ou90g 089(]aU893 A m

1INSY A

65~ opis Jonias) 0. ;

syse| Jusi aIS gam mmmmmos_m

i m

06S m

L6G afeloig m

Y o |

ll \u - \—
JEINEYS ol

ll

~—.

0SS
Y spol
025 OPS f 095
< A =
Jlod JoJJUoD
g ong ~| aAOp\ JBBU
]
\
uonessiboy leyng Jopusy
WQOD JUaA3
= ~
0€S 045

(TWLH apis-jusl|o) 81IS gam

L T T T T S

U.S. Patent Apr. 26,2016 Sheet 7 of 17 US 9,323,495 B2
20 Client Sever |10
| 1,640 :
Message sent time S \ S Sync i 650
server time Stamp with current server time
Message received time R - 5
| 1660 |
Rount trip message transport =R - S E
Server delta time = :
current time - server time 5
FIG. 16
Future Server
Current action [10
Client ~ ST Conrol
610 1
o 0 Next Client 620
Client ext Client's |,
Pollt | ™| Tasks Queue
for tasks
FIG. 15
X,y L
Scene
(client X) w
| R
' h

FIG. 1

7

U.S. Patent Apr. 26,2016 Sheet 8 of 17 US 9,323,495 B2
First Client Registration
Client Server
700 ,
Register (URL) - 710
Create scene
5 720
; Add new client
Set task:
740~ | Client ID Random Motion
Set page title B 730
Repeat 10 x J Sync R
_ || Stamp with
- Server Time server time
Accumulate message
transport time
7504
Sleep 500 ms
Ready 770
J >
760 , _ Stamp with
T Major poll period server time
Start periodic| | '
poll timer
7807 |

]
sebowmnma
1

First poll

(Rand. Motion task)

FIG. 18

U.S. Patent Apr. 26,2016 Sheet 9 of 17 US 9,323,495 B2

Subsequent Client Registration

Client Server

700 i
Register (URL) L
Create scene/

! 7111 add client

! Update edges (client
: 721~ & neighbouring clients)

If 2nd client, set task:

740~ | Client ID 7311 Rand. Motion Cross

Set page title B E
Repeat 10 V Sync N :

; _ 1| Stamp with

» Server Time server time
Accumulate message 5
transport time ;

: 750~
Sleep 500 ms :
Ready : -T70

j — 1

760~ _ _ Stamp with

L Maijor poll period server time
Start periodic| | ;
poll timer :
7807 1 5

First poll

(Rand. Motion task)

FIG. 19

U.S. Patent Apr. 26,2016 Sheet 10 of 17 US 9,323,495 B2

Poll sequence

Client l Server
Wait for poll ticm Pollfortask) | 810
8007 Get all tasks from
; the clients queue
: Transform tasks
830 ! List of tasks for transmission
Execute tasks ! 820
one-by-one !

__

Update task queues
of the impacted clients :

FIG. 20
870 880 890 900
b = S H
Next
Scene Edge H/S scene

FIG. 21

US 9,323,495 B2

Sheet 11 of 17

Apr. 26,2016

U.S. Patent

....... I

3903 L3I0 |
OL HLVd
31710dvHLX3!

1SITHMSYL
110d

'L00b

0Ly

g IN3NO

cc

Ol

09t

dN30S
L1X3N 404
MSVL L3S

}

05|

S31YNIJH000
3N30S IXANOL
Hivd 3LYISNYHL

A

e

N3OS LX3N HLIM
NOILO3SHILNI
VARl

H3AY3S

0Zv
O
HLVd M3N 135
ocp] _p%%m,____ 9 NOILOI 143
=INELe
S H
3503 1408
4O QVH
k| oann
/
3903 133N
oop’/| OLHIVd |-
JLY10dYNLX3
v IN3MO

US 9,323,495 B2

Sheet 12 of 17

Apr. 26,2016

U.S. Patent

€¢ 9Old
L 2b
O
; (S)aNn3os HLVd M3N 13S
0L6 1XaN 3 NOILDT143Y
wm%%%__ NIV.LEO ETNRELS
056
LIVMY
! 0c6 S H
/J .
N3O LX3AN HLvd
ovm& OL (IN3LNOD) NOILO3143d 3903 1408
‘JWIL ‘Hivd ONIS JAE3A 1 HO QYvH
434 MOTHO
w I A
3903 140S 3903 133N 0L
s 40 QuvH = H1vd INTHHND
0c6 M03HO JIV10dVELX3
L0V

A

U.S. Patent Apr. 26,2016 Sheet 13 of 17 US 9,323,495 B2

h 970 q 1000
5 5
1020
980
990 glq
H
80
< S
960 1010
FIG. 24
1060
S

_ ,
1040 " os0

H
1030
FIG. 25

U.S. Patent Apr. 26,2016 Sheet 14 of 17 US 9,323,495 B2

Y
Ul
CONTROL |, 1100
DETECTED
! 1110
N | OBJECT ACTON =1 1120
' INSTRUCTION
Y
1130
CONTROL ACT ON OBJECT
AT OBJECT ~-{ -SPECIFIC | 1140
LOCATION ? INSTRUCTION
N
\
FIG. 26
80
£
1170
—
) \ - 5
1150 1160

FIG. 27

U.S. Patent Apr. 26,2016 Sheet 15 of 17 US 9,323,495 B2

1200+,

. by 1210
—
FIG. 28A

FIG. 28B

71240

FIG. 28C

U.S. Patent Apr. 26,2016 Sheet 16 of 17 US 9,323,495 B2

1290
1260 1270 1280
= — S

80
P

ﬂo//
FIG. 29
1320
Ar y
1310
— /@/
| €0
1330 L7
— X

FIG. 30

U.S. Patent Apr. 26,2016 Sheet 17 of 17 US 9,323,495 B2

CLIENT SERVER
1400~| DETECT
POSITION
Y
14101 TRANSMIT ADJUST CLIENT'S f1420
TO SERVER =| CANVAS
POSITION
FIG. 31
CLIENT A OTHER CLIENTS
1500~ DETECT
POSITION
v
TRANSMIT CHANGE STORE CHANGE | 1520
1570 o canvas posITION -| “INcuenTas P
TO OTHER CLIENTS CANVAS POSITION
FIG. 32
CLIENT
RECEIVE
1600~ ogjEcT
DEFINITION
Y e
1620~ SCALE | : pxeL 1610
FOR DISPLAY [! RESOLUTION !

FIG. 33

US 9,323,495 B2

1

DISPLAY, CLIENT COMPUTER DEVICE AND
METHOD FOR DISPLAYING A MOVING
OBJECT

FIELD OF THE DISCLOSURE

This disclosure relates to displays. Typically, a computer,
mobile telephone, tablet computer or the like has a single
associated display screen.

DESCRIPTION OF THE RELATED ART

In the case of some types of computer, the device’s display
can be implemented by two or more separate physical display
devices, generally driven by the same graphics processor so
as to represent respective portions of a single “canvas” or
virtual display region that is larger, in terms of pixel size, than
either individual physical display device. This arrangement is
sometimes provided on desktop computers to allow a larger
active display area than can be operated with just one physical
display device. In the case of portable computers, the arrange-
ment is sometimes used to map part of the canvas to a local
display screen (perhaps forming part of the portable com-
puter) while mapping the other part of the canvas to a video
projector.

Other techniques have been proposed which allow multiple
physical devices to represent portions of a larger canvas.

SUMMARY

This disclosure provides a display apparatus for displaying
a moving object traversing a virtual display region, the appa-
ratus comprising:

two or more client computer devices each being configured
to display a respective portion of the virtual display
region, in which each respective portion is defined by a
set of edges, each edge being classified as a hard edge,
from which the moving object is reflected, or a soft edge
through which the moving object is allowed to pass; and

a path controller, associated with each client computer
device, for defining a path of the moving object with
respect to the portion of the virtual display region which
is displayed by that client computer device;

the path controller being configured, when the path con-
troller defines a path which intersects a soft edge of that
client computer device’s portion of the virtual display
region, to transmit data defining the path of the moving
object for use at least by another client computer device
which displays the next portion of the virtual display
region which will lie within the detected path of the
moving object. According to a further aspect, the disclo-
sure provides a client computer device for using in a
display apparatus for displaying a moving object tra-
versing a virtual display region and having two or more
client computer devices each being configured to dis-
play a respective portion of the virtual display region, in
which each respective portion is defined by a set of
edges, each edge being classified as a hard edge, from
which the moving object is reflected, or a soft edge
through which the moving object is allowed to pass. The
client computer device comprises:

a path controller, associated with each client computer
device, for defining a path of the moving object with
respect to the portion of the virtual display region which
is displayed by that client computer device;

the path controller being configured, when the path con-
troller defines a path which intersects a soft edge of that

10

15

20

25

30

35

40

45

50

55

60

65

2

client computer device’s portion of the virtual display
region, to transmit data defining the path of the moving
object for use at least by another client computer device
which displays the next portion of the virtual display
region which will lie within the detected path of the
moving object.
According to a still further aspect, the disclosure provides
a method of displaying a moving object traversing a virtual
display region using two or more client computer devices
each being configured to display a respective portion of the
virtual display region, in which each respective portion is
defined by a set of edges, each edge being classified as a hard
edge, from which the moving object is reflected, or asoftedge
through which the moving object is allowed to pass, the
method comprising:
each client computer device defining a path of the moving
object with respect to the portion of the virtual display
region which is displayed by that client computer
device;
when a path is defined which intersects a soft edge of that
client computer device’s portion of the virtual display
region, transmitting data defining the path of'the moving
object for use at least by another client computer device
which displays the next portion of the virtual display
region which will lie within the detected path of the
moving object.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the disclosure will now be described, by
way of example only, with reference to the accompanying
drawings in which:

FIG. 1 schematically illustrates a network of devices;

FIG. 2 schematically illustrates a multi-screen display;

FIG. 3 schematically illustrates a virtual canvas formed by
two separate adjacently positioned client displays;

FIG. 4 schematically illustrates hard and soft edges;

FIG. 5 schematically illustrates edge bit patterns;

FIG. 6 schematically illustrates a bouncing motion within
a single client display;

FIG. 7 schematically illustrates a transit of a displayed
moving image from one client display to another;

FIG. 8 schematically illustrates the transit of FIG. 7 inmore
detail,

FIG. 9 schematically illustrates the network of FIG. 1 in
functional terms;

FIG. 10 schematically illustrates a display scene;

FIG. 11 schematically illustrates a client or server device;

FIGS. 12 and 13 schematically illustrate the translation of
coordinate systems;

FIG. 14 schematically illustrates functional aspects of a
client and a server;

FIG. 15 schematically illustrates the transfer of action data
from one client to another via a server;

FIG. 16 schematically illustrates a time synchronisation
process;

FIG. 17 schematically illustrates coordinate systems
within a single client’s display;

FIGS. 18 and 19 schematically illustrate client registration
processes in a client-server system;

FIG. 20 schematically illustrates a polling sequence car-
ried out by a client;

FIG. 21 schematically illustrates a table of edge data;

FIG. 22 schematically illustrates an edge-crossing process
in a client-server system;

FIG. 23 schematically illustrates an edge-crossing process
in a peer-to-peer system;

US 9,323,495 B2

3

FIG. 24 schematically illustrates an object meeting a hard
and a soft edge substantially simultaneously;

FIG. 25 schematically illustrates an object meeting a cor-
ner boundary between two scenes;

FIG. 26 schematically illustrates the interaction of a client
device’s user interface (UI) with an object currently displayed
by that client;

FIG. 27 schematically illustrates a user touching a touch-
screen at a point where an object is currently displayed;

FIGS. 28A-28C schematically illustrate three-dimensional
portions of a three-dimensional canvas;

FIG. 29 schematically illustrates three display portions
positioned adjacent to one another to form a three-dimen-
sional canvas;

FIG. 30 schematically illustrates two display portions posi-
tioned non-adjacent to one another, to form a three-dimen-
sional canvas;

FIG. 31 schematically illustrates a process for position
detection at a client device in a client-server system;

FIG. 32 schematically illustrates a process for position
detection at a client device in a peer-to-peer system; and

FIG. 33 schematically illustrates an object scaling process.

DETAILED DESCRIPTION

FIG. 1 schematically illustrates an example of a network of
devices acting as a display apparatus for displaying a moving
object traversing a virtual display region (a virtual canvas),
comprising a server 10, a laptop or notebook computer 20, a
television display 30, a tablet computer 40 and a mobile
telephone 50. The devices are interconnected for the purposes
of transferring data between them by a network 60 such as an
Ethernet network. The server 10, the laptop computer 20 and
the television display 30 are connected by wired connections
to the network 60. The tablet computer 40 and the mobile
telephone 50 are connected by wireless connections such as
so-called Wi-Fi connections, made via a wireless access point
70 which in turn is wired to the network 60. The skilled person
will appreciate that the function of a wired or wireless con-
nection to a network of this type is substantially identical in
both cases; from the point of view of the operation of the
individual devices with respect to the network, there is little or
no technical difference between a wired and a wireless con-
nection.

The function of the server 10 can be fulfilled by one of the
other devices, such as the laptop computer 20. In such a case,
a separate server is not required.

In the present embodiments, the devices are interconnected
for the purposes of providing a multi-screen composite dis-
play. Such an arrangement is illustrated schematically in FIG.
2, which shows four of the devices arranged side-by-side in a
row. A displayed object 80, in this case a company logo,
follows a path 90 across each of the devices in turn, from the
mobile telephone 50 to the television display 30 in this
example. The path 90 need not be displayed; it is drawn in
FIG. 2 simply to assist with the illustration. The significant
part of the arrangement is that the displayed object 80 moves
from screen to screen so as to follow the effective path 90. The
path need not be straight; it could be curved for example.

One possible use of the multi-screen display of the type
shown in FIG. 2 is to encourage purchase by a user of a suite
of'devices from the same manufacturer, by demonstrating the
close interaction and compatibility of the separate devices.
Another possible use is to allow a canvas formed of multiple
displays to be used to display a moving object without having
to pre-produce and transmit the content to be displayed to
each client device or individual display; instead, each client

25

30

40

45

55

4

device can react to user input influencing the content for
display to modify or generate content (such as locally pro-
duced photographs) and send such content to other client
devices or constituent displays making up the canvas. For
example, this could allow different users to work with virtu-
ally adjacent displays forming part of an overall virtual can-
vas and to share information by sending the information
through an interface between two such virtually adjacent
displays.

FIG. 3 schematically illustrates a virtual canvas formed by
two separate adjacently positioned client displays. The can-
vas 100 is at least as large as the sum of the display sizes or
“scenes” of the constituent client devices. Techniques will be
described below which allow objects, and in particular ani-
mations, to be displayed across the whole of a canvas even
though the canvas is formed of two or more such scenes.

FIG. 4 is a schematic illustration to introduce the concept
of “hard” and “soft” edges. At a basic level, each edge of a
scene is classified according to the property of whether an
object moving towards that edge would bounce back from the
edge or can pass through it, out of that scene and eventually
enter another scene. In FIG. 4, the displayed object 80 is
shown on a path 110 which will take it out of the scene
corresponding to one client device and into the scene corre-
sponding to another client device (labelled here simply as
“client A” and “client B” to illustrate the fact that this is an
arbitrary selection of two clients rather than representing a
particular choice of two clients from FIG. 2). The peripheral
edges of the composite canvas formed by the two adjacent
scenes are classified as “hard” edges.

If the moving displayed object 80 reaches a hard edge,
which it will in due course by following the path 110, in this
embodiment it is controlled to “bounce” or rebound off the
hard edge in a simulation of the laws of physics which would
apply in theory to, say, a perfectly elastic collision between a
moving snooker ball and the edge of a snooker table. So, ata
collision with a hard edge, the displayed object will rebound
such that the angle of incidence equals the angle of reflection
and the object maintains its previous speed. Alternatively
different motion paths and simulations of reflection physics
may be envisaged.

On the other hand, if the moving displayed object reaches
a soft edge, the object will pass through the soft edge such that
it can be re-displayed on another scene corresponding to
another client. This is the situation illustrated in the FIG. 4, in
which the displayed object 80 is passing from the scene
displayed by client A to the scene displayed by client B. If the
two scenes are adjacent in terms of their positions in the
canvas 100, then as a part of the displayed object 80 ceases to
be displayed on one scene, it will almost straight away be
displayed on the next scene. However, it is not essential that
the scenes are adjacent within the canvas 100. There could be
a gap. In such a case, to maintain the illusion that the object is
really moving from one scene to the other, the object would
disappear from view as it traversed a gap between the two
scenes, re-emerging into the second scene (the scene dis-
played by client B in this example) after the appropriately
calculated period of time corresponding to the object’s speed
and the virtual distance with respect to the canvas between the
two scenes.

Accordingly the networked devices of FIG. 1 represent an
example ofa group of two or more client networked computer
devices each being configured to display a respective portion
of'the virtual display region, in which each respective portion
is defined by a set of edges, each edge being classified as a
hard edge, from which the moving object is reflected, or a soft
edge through which the moving object is allowed to pass.

US 9,323,495 B2

5

In general, the normal intention would be that the physical
client devices are arranged with respect to one another in the
same manner as the arrangement of their corresponding
scenes with respect to the canvas 100. However, this is of
course not essential, so that (for example) the two scenes of a
pair of scenes could be adjacent to one another in the canvas
100 (in the manner shown schematically in FIG. 4) but the
corresponding physical client devices could be separated
from one another (for example, in the manner shown sche-
matically in FIG. 2). These sorts of choices are available to the
system implementers.

The generation of a canvas 100 from a set of scenes will be
described in more detail below. In one example, all of the
edges of a scene are classified as hard edges until the canvas
is established, at which time some of the edges may be reclas-
sified as soft edges. Once the classification of hard and soft
edges has been initially established, it can still be modified or
redefined after that. For example, if a new scene is added to
the canvas, or a scene is removed from the canvas, in both
cases changing the number of scenes in the canvas, the defi-
nition of hard and soft edges can be changed to suit the new
overall canvas. The definition of hard and soft edges can also
be changed in response to a detection that the existing scenes
in a canvas have been moved relative to one another, in terms
of'their virtual positions within the virtual canvas. In a further
alternative, a scene (or a client device controlling a scene)
could issue a message or an instruction (such as an “intent”
message—see below) so as to redefine its edges in a particular
way. For example, if a user is undertaking a processing task at
a client device which will result in a modification of the
moving object, that client device could temporarily redefine
(or request the redefinition of) all of its edges as hard edges.

FIG. 5 schematically illustrates edge bit patterns, which are
used in the present embodiments to identify the orientation of
an edge. One use of the edge bit patterns will be described
below in connection with FIG. 21. The example edge bit
patterns of FIG. 5 give each of the four edges of a rectangular
scene a unique four bit pattern or code.

FIG. 6 schematically illustrates a bouncing motion within
a single scene. The object 80 is following a path 120 from a
left-hand edge 130, to an upper edge 140, to aright-hand edge
150 and from there to a lower edge 160. The upper edge 140
and the right-hand edge 150 are hard edges, so the path 120
followed by the object 80 rebounds from each of those two
edges. FIG. 6 does not in fact define whether the left-hand
edge 130 and the lower edge 160 are hard or soft, but for the
purposes of discussion it will be assumed that they are soft. In
this case, it is assumed that the object 80 entered the displayed
scene through the left-hand edge 130 and will exit the dis-
played scene through the lower edge 160.

FIG. 7 schematically illustrates a transit of the displayed
object 80 from one scene to another. In particular, the left-
hand scene (client A) forming part of the canvas 100 can be
considered as the same as the client A scene shown in FIG. 6,
except that the right-hand edge 150 is soft rather than the hard
edge shown in FIG. 6. This edge 150 is adjacent, within the
canvas 100, to a soft edge 170 of the adjacent scene from
client B. At a “cross over point” 180 the displayed object 80
makes a transition from the scene displayed by client A to the
scene displayed by client B.

In general terms, a client defines the path taken by the
object within that client’s own scene.

The displayed object 80 would normally be expected to
encompass many more than one pixel in width and height, in
order for the user to be able to see it; it is shown schematically
in the drawings as a square box, but of course any required
shape and design may be used. In the context of a system in

20

25

30

35

40

45

50

60

6

which there is either no gap or a very small gap between
adjacent scenes in a canvas, the expectation would be that the
displayed object 80 would be wider than the separation
between two horizontally adjacent scenes. The effect of this is
that there will be stages during the transit from one scene to
another when the displayed object 80 is partially displayed in
one scene and partially displayed in the next. Techniques to
achieve this in a way which looks natural to the user will be
described below.

FIG. 8 schematically illustrates the transit of FIG. 7 inmore
detail. The path 190 followed by the displayed object 80 is
referred to as a cross over path when it will result in the
displayed object 80 making a transit from the current scene to
a next adjacent scene. The path 190 comprises different seg-
ments, the segments being separated by changes in direction,
and the last segment 200 being referred to as the last segment
of'the cross over path from the point of view of client A. The
displayed object 80 enters the scene displayed by client B on
the same path, but in the context of client B the path is now
referred to as the first segment of the cross over path 210.

Note that the path followed by the displayed object need
not be straight. In response to the cross-over point at which
the path makes a transit into the next scene, a client can define
a non-straight path within that scene, and calculate a cross-
over point as the object leaves that scene.

The way in which transits of the displayed object are
handled will be described below in more detail. First, how-
ever, the technical nature of the network of FIG. 1 will be
described further with reference to FIG. 9.

FIG. 9 shows a similar arrangement to that illustrated in
FIG. 1. Various devices are connected by wired or wireless
links to the network 60. Among the devices are client devices
such as the devices 20, 40, 50. In a client-server system, the
functionality of a server needs to be provided, but this can be
either as a stand-alone server 10 or alternatively one of the
client devices can provide the functionality of the server. In
the present context, the server is to be considered as a com-
puting device which is connectable to client devices to pro-
vide data resources and overall control or supervision of the
rendering operations of the client devices to allow for the
animation of the displayed object 80 between the different
client devices.

Several of the client devices may have their own associated
display. This would apply to a mobile telephone, a tablet
computer or a laptop computer. A television receiver such as
the television 30 in FIGS. 1 and 9 may or may not have
sufficient intrinsic processing functionality to actas a client in
its own right. Traditionally, television displays were “dumb”
devices in that they simply received and displayed signals
which were provided to them. This form of television display
is schematically illustrated in FIG. 10, which represents a
display screen 240 simply displaying signals provided to it as
an input 250. More recently, however, some television dis-
plays such as so-called “smart televisions™ have a consider-
able amount of internal processing functionality and are oper-
ableto provide the type of processing and rendering functions
to be described below in connection with a client in FIG. 9. To
accommodate these different possibilities within FIG. 9, the
television display 30 is shown as potentially being linked
directly to the network 60 by a direct connection 220 or
alternatively being controlled by one of the clients 20 by a
connection 230.

As further technical background, FIG. 11 schematically
illustrates the internal functionality of a client or server
device. It will be appreciated by the skilled person that FIG.
11 is a very general illustration of such a device, and further
components may be included in such a device.

US 9,323,495 B2

7

Referring to FIG. 11, the client or server device comprises
a bus 260 to which are connected a processor 270 (shown as
a “central processing unit” or CPU), one or more memory
devices 280, and input/output (I/O) interface (I/F) 290,
optionally a location detector 300 and a user interface which,
in this example, is shown as comprising a display 310 and
user controls 320.

The one or more memory devices 280 can comprise, for
example, read only memory (ROM), random access memory
(RAM) and non-volatile storage such as magnetic or optical
disk storage or flash memory storage. In basic terms, the
memory devices 280 allow the storage of operating software
representing processing operations to be carried out by the
processor 270 and working data used as part of those pro-
cesses, such as image rendering data and data defining the
path of an object to be displayed.

The input/output interface 290 provides for data connec-
tion between the other components of the device of FIG. 11
and the user interface components 310 320. It also provides
the network connection 330 to the network 60.

The location detector 300 is optional. It can be used as
described below to provide an automated detection of the
relative physical positions of displays forming a canvas 100.
Location detection technology is known, particularly in the
field of portable computing devices such as laptop computers,
mobile telephones and tablet computers. At a coarse level,
geographical location detection systems such as the global
positioning system (GPS) can be used to detect the position of
a device. At a finer level of detail, devices such as accelerom-
eters and gyroscopes are used to detect changes in position of
portable devices. Any and all of these location detection
arrangements can be provided as the location detector 300.

In operation, the processor 270 acts as a path controller,
associated with each client computer device, for detecting a
path of the moving object with respect to the portion of the
virtual display region which is displayed by that client com-
puter device; the path controller being configured, when the
path controller detects a path which intersects a soft edge of
that client computer device’s portion of the virtual display
region, to transmit data defining the path of the moving object
for use at least by another client computer device which
displays the next portion of the virtual display region which
will lie within the detected path of the moving object.

The operation of the client-server described above will
now be described with reference to FIGS. 12 and 13 and the
flowchart of FIG. 22.

In particular, FIGS. 12 and 13 schematically illustrate the
translation of coordinate systems that will be discussed
below. FIG. 22 is a flowchart showing operations of two
clients (client A and client B) and a server 10. These opera-
tions are represented in respective columns of FIG. 22. It
should be noted that the operations are the same whether or
not the server 10 is provided as a stand-alone device or as part
of the functionality of one of the clients in a network of
interconnected clients.

Referring to FIG. 22, the process starts with the assumption
that the displayed object is currently displayed on the scene
corresponding to client A. Client A computes a cross over
path which, as discussed above, comprises successive seg-
ments leading up to alast segment during which the displayed
object makes a transit out of client A’s scene. This process is
represented by the following steps in FIG. 22:

At a step 400, the client A extrapolates the current path of
the displayed object 80 until the path meets an edge of the
scene displayed by client A. At a step 410, the client A detects
whether that edge is a hard or a soft edge. If it is a hard edge
then at a step 420 the client A derives a reflection vector and

10

15

20

25

30

35

40

45

50

55

60

65

8

sets a new path segment, before returning control to the step
400. As discussed above, the reflection can be based on
simple physical laws assuming a perfectly elastic collision
with the scene edge.

If on the other hand, the edge that is detected at the step 410
is a soft edge, then at a step 430 the client A sends a so-called
“intent” message to the server 10.

The “intent” message defines the displayed object’s cur-
rent path relative to the coordinate system of the scene dis-
played by client A. It also defines the temporal position of the
displayed object. As an example of this temporal information,
the intent message might define the time, relative to a tempo-
ral reference which is common to the server and the clients, at
which the displayed object 80 will leave the scene displayed
by the client A. The way in which the temporal reference is
defined so as to be common between the server and clients
will be discussed below. The time at which the displayed
object 80 will leave the scene may be defined in terms of the
first pixel of the object to leave the scene or a time at which a
centre or other suitable reference point within the displayed
object 80 leaves the scene.

Throughout the processing of the steps 400 . . . 430, the
client A continues to render the displayed object for display
according to its calculated path. Similarly, although steps
which are carried out by the server 10 will now be described,
during the time that these steps are executed the client A will
also continue to render the displayed object for display.

In response to the “intent” message, the server 10 first
calculates (at a step 440) the intersection of the current path of
the displayed object 80 with the next scene. To do this, the
server 10 refers to definitions of the positions of each scene
with respect to the global (canvas) coordinate system, and
translates the vector representing the last segment of the cross
over path in the scene displayed by client A to a corresponding
path in the global coordinate system. Referring to FIG. 12,
this path in the global coordinate system is referred to as the
path X'-Y", where the apostrophe signifies the global coordi-
nate system.

Using the path X'-Y' and the known position of the other
scenes within the global coordinate system, the intersection
C' at which the displayed object will enter the scene displayed
by the client B can be calculated, along with the point D' at
which the displayed object will first meet an edge of the next
scene. The points C' and D' therefore define a path segment
within the scene displayed by the client B, but in the context
of the global coordinate system.

The server then, at a step 450, translates the calculated path
X'-D' in the global coordinate system into a path vector with
respect to the local coordinate system of the scene displayed
by client B. This translation is illustrated schematically in
FIG. 13 by the translation of X'-D' in the global coordinate
system into the vector X-D in the coordinate system of client
B.

At a step 460, the server set a “task™ for the client respon-
sible for the next scene, which in this case is client B. The task
is added to a queue of tasks to be accessed by the clients.

Therefore, in an example of a client-server system, the
server computer device is operable to maintain data defining
the size and relative position of each portion within the virtual
display region; the client computer devices are operable to
transmit the path data to the server computer device; and the
server computer device is operable to detect, from the path
data, which client computer device displays the next portion
of'the virtual display region which will lie within the detected
path of the moving object and to provide path data to the next
client computer device to initiate rendering of the moving
object by that next client computer device.

US 9,323,495 B2

9

In embodiments of the disclosure, the server computer
device is operable to receive the path data from a client
computer device according to a coordinate system local to the
transmitting client computer device and to translate the path
data into the coordinate system local to the next client com-
puter device for provision to that next client computer device.

Note that information defining the content of the displayed
object can also be passed from client to client as the displayed
object moves to a new scene, in a similar manner to that
discussed below with reference to FIG. 23.

The tasks communicated by the server 10 to the clients can
include various types of operation. Examples are:

Scene Change: this task is used to update the definitions of

hard and soft edges associated with the clients;

Random Motion: this task is used to initiate a “random”
motion of the displayed object. In fact, a pseudo-random
motion is initiated with a “random” initial direction,
starting position and speed;

Random Motion Cross: Note that in example embodiments
the Random Motion task is simply a random motion for
predefined period a time, which considers all edges as
hard. In other words, the logo will stay inside current
client’s boundaries and bounces randomly from its
edges. This is used at the beginning, when only one
client (which in some embodiments might be the same
PC or computing device which is also running the
server) is registered. Once the second client registers its
scene with the server (and some edges become soft), the
task Random Motion Cross is planned, bouncing the
logo from hard edges until a soft edge is hit. At this point
the intent is sent to the client, so it will continue planning
a logo path across its screen.

Motion Cross Into: this is a response to the intent message
received from a client (for example, after the step 430 of
FIG. 22). The server detects all clients having scenes
which are intercepted by the vector provided as part of
the intent message. The server then assigns the “motion
cross into” task to the first client intersected by this
vector.

Reset: this simply resets all of the information relating to
the definition of the canvas.

Uses or refinements of the tasks such as “motion cross into”
allow features such as the user “flicking” a photograph or
other content through a soft edge by means of the flicking
motion described with regard to FIG. 27, though in some
examples the photograph might just move along a trajectory
and stop after moving over the other (for example, the adja-
cent) client’s screen for a certain distance. Or maybe the user
might identify the coordinates of the other client’s scene
(which may or may not be the adjacent scene in the virtual
canvas) to which he wants to “send” the photo and thus define
a certain motion path with an end point, an initial velocity
and, optionally, an associated simulation of momentum and
deceleration.

So, in the present case, at the step 460 the tasks set for the
next scene is a “motion cross into” task having (for example)
the format:

MotionCrossInto (X, D, start_time)

This task is added (by the server) to the task queue main-
tained by the server as a next task for (in this example) client
B. The variables X and D correspond to the positions, within
the coordinate system of client B, shown in FIG. 13. These
variables uniquely define the path vector within the coordi-
nate system of client B. The variable start_time defines, in this
example, the time at which the path starts at the point X,
though in other embodiments it could be arranged to define
the time at which the displayed object enters the scene defined

10

40

45

10

by the client B. In a further alternative, just the crossing point
may be defined, so that the client receiving the moving object
is able to decide how and according to what physics or other
rules that object should move after it enters that client’s scene.

The clients each poll their respective task queues regularly.
The polling operation involves consulting the queue of tasks
held by the server in respect of that client to see whether any
new tasks have been added to the queue. The polling system
will be described in detail below. For now, it is sufficient to
say that at a step 470 the client B polls the server’s task list,
such that the first occasion on which the step 470 takes place
after the task has been set at the step 460 will result in the
client B receiving the “motion cross into” task set at the step
460. In response to the received task, the client B prepares to
render the displayed object and also starts a process corre-
sponding to the steps 400, 410, 420, 430 previously described
with reference to the client A.

FIG. 14 is a schematic representation of functional aspects
of the client and server devices which carry out the steps
discussed above. The functionality of FIG. 14 is provided by
the features set out in FIG. 11 and described above.

In basic terms, the interaction between the client and the
server in this embodiment can be carried out using the “com-
ponent object model” or “COM?” system, which is an estab-
lished language-neutral technique for providing intercommu-
nication between software components, or just as software
classes treated as logical components. The server 10 main-
tains a server-side website 500 which the clients can register
with (establish initial communication and parameters with)
using a COM registration module 510, and which the clients
can poll using a COM poll module 520. The polling operation
involves sending a message to the server-side website 500 and
receiving from the server-side website 500 details of any
queued tasks relating to the requesting client.

A received task is passed to an event buffer 530 at the client,
from which it is read out at the appropriate time of execution
by an event control module 540. The event control module
interacts with software tools 550 providing some of the func-
tions required by queued tasks, such as the derivation of path
vectors and intersections. The movement and rendering of the
displayed object 80 is handled by a linear move module 560
and a rendering module 570.

A client-side website 580 handles interaction with the cli-
ent.

At the server side, server tasks are handled by a task execu-
tion unit 590. The tasks are in some cases initiated by “intent”
or other messages received from clients, and in other cases by
the server acting as overall supervisor of the multiscreen
display system. The server maintains a store 600 defining the
geometry and coordinate systems of the individual scenes and
also the overall canvas. Classes shown in FIG. 14 include:
a. ClientStorage 591—a list of registered clients (each one of
them with its own scene description, scheduled tasks)

b. Client 592—One client in the ClientStorage list

¢. SceneDesc 593—Description of the scene (dimensions)
and hard/soft edges in a client

d. Vector/Point 2D 594, 595—basic maths primitives repre-
sentations—used for path calculation on the server side.

FIG. 15 schematically summarises the transfer of data
defining required actions from one client to another via the
server. A current client issues a message such as an intent
message 610 to the server 10, defining a future action such as
an action required by another client. The server processes the
message to derive a future action expressed in terms of param-
eters of a next client, and adds the future action to the next
client’s task queue 620, or to a generic queue from which the
next client identifies an appropriate task, for example by data

US 9,323,495 B2

11

identifying a client associated with each task. The next client
carries out a polling operation 630 to poll that client’s task
queue for newly added tasks.

A feature of the system described above is a common time
reference amongst the server and the clients forming the
multiscreen display system. A technique for establishing such
a common time reference will be described with reference to
FIG. 16. Using these techniques, the client computers and/or
the sever computer are operable to establish a shared refer-
ence time; to define the path data with reference to the shared
reference time; and to render the moving object according to
the shared reference time.

A significant feature of a common time reference as
described is that the time reference relates to operations (in
this case, the rendering of an object for display) which relate
to the real or physical world. In other words, the motion of the
rendered displayed object should appear, to the user, to be
based upon a time reference which is consistent between the
different display devices contributing to the rendering. This is
particularly important when the displayed object crosses
from one scene to another scene. However, within each indi-
vidual processing device (client or server) the internal timing
of processing operations can be carried out according to a
local clock as normal. So, the consistent time reference is
established only foruse in synchronising the movement of the
output rendered image.

Referring to FIG. 16, according to the depicted embodi-
ment each of the clients which are associated together in a
multi-screen system synchronises its “real world” clock, that
is to say the time reference which is used for coordinating
motion of the rendered displayed object, to a time reference
defined by the server. The synchronisation process may make
use of the transmission of an empty message 640 from the
client to the server. Here, an empty message refers to a mes-
sage carried by the network 60 which has either no payload or
a minimum size dummy payload. The reason that an empty
message is used is that its small size means that any delay or
latency in the delivery of the message is caused by the net-
work connections rather than by the fact that a long message
has to be handled by either the sender or recipient.

The message is sent by the client at a message sending time
S, which the client records. When the server receives the
message 640, the server modifies (at a step 650) the message
to refer to the current time at the server. This process is
sometimes referred to as applying a “timestamp” to the mes-
sage. The server then immediately returns the message to the
client, which receives it at a time (in the client’s reference) R.

The transmission time of a message from the client to the
server or from the server to the client is derived by the client
(at a step 660) as follows:

round trip message transport time=RTTT=R-S

one way message transport time=OWTT=(R-S)/2

The difference between the server’s time reference and the
client’s time reference is also derived by the client as follows:

Time_difference(CLIENT #)=(R—(server time stamp+
OWTT))

The operations shown in FIG. 16 may be carried out a
number of times (such as 10 times) so as to derive average
values of the variables described above. This overall process
can also be repeated at intervals (such as every 5 minutes) to
recalibrate the time difference variable.

In this way, each client can derive a time difference
between that client’s internal time reference and the time
reference used at the server. Whenever an operation has to be

10

15

20

25

30

40

45

50

55

60

65

12

coordinated with other clients, such as the rendering opera-
tion relating to a displayed object, the timing of that operation
is referred back to the server time, using the time difference
that has been derived.

An exemplary process by which the clients can register
with (initiate their interaction with) the server will now be
described with reference to FIGS. 17-19.

Referring to FIG. 17, a client may define its own scene (the
extent of its own display) in terms of the following variables:

scene X,y: the pixel coordinates of a predetermined corner

(in this example, the top-left corner) of the scene with
respect to the global (canvas) coordinate system; this can
be established manually or in response to a machine
detection of the relative physical positions of the differ-
ent display devices.

scene width (w) and height (h) in pixels

reset parameter to allow resetting of some or all of the

parameters

Accordingly, using these techniques, a client computer
device is operable to detect a difference between an internal
time at that client computer device and the shared reference
time at the server by transmitting a message to the server; the
server is operable to send the message back to the client
computer device; and the client computer device is operable
to detect the transit time for the message and to detect the
time, at the server according to the shared reference time,
when the message was sent back to the client computer
device.

The client sends this information to the server as (for
example) a so-called HTTP GET query to the server-side
website described above. The variables are expressed as
parameters within such a query. An example of such a query
is as follows:
http://192.168.11.31/multi/
default.aspx?x=0&y=0&w=400&h=400&reset=1

FIGS. 18 and 19 refer to examples of client registration
processes. In particular, FIG. 18 refers to the first client to
register with the server, and FIG. 19 refers to subsequent
clients registering with the server.

Referring first to FIG. 18, at a step 700 the client sends (for
example) an HTTP GET message of the type described above
to the server to initiate registration. At a step 710, the server
processes the registration request to create a scene within a
new canvas and, at a step 720 adds the requesting client to its
list of registered clients. At a step 730, the server may set a
“random motion” task as discussed above, to initiate random
motion, although this is of course an optional feature at this
stage and need not form a part of the registration process. It is
also noted that such a task could in fact be initiated by a client
after registration. The task is added to that client’s task queue
(to be retrieved by the client at the next polling operation) and
a client identifier client_ID is transmitted to the requesting
client.

Atthis stage, all of the edges of the registered client’s scene
will be classified as hard edges, because there are not yet any
other scenes within the canvas.

At a step 740, the client sets a variable page_title to define
the current canvas or scene with respect to other canvases or
scenes.

The client and server then (for example) carry out the time
synchronisation process 750 described above with reference
to FIG. 16. This process will not be described again here.

Once the time synchronisation process 750 has been car-
ried out, the client is considered to be “ready” for operation.
It sends a “ready” message to the server at a step 760. At a step
770, the server stamps the “ready” message with its server
time and indicates when the client should start polling the

US 9,323,495 B2

13

server for queued tasks, also indicating the period of such
polling. In response to this at a step 780 the client initiates a
periodic polling timer which (for example, using an interrupt
mechanism) will initiate the polling process at regular inter-
vals at the client. Of course, the first time that a polling
operation takes place, the random motion task set at the step
730 will be retrieved (and then acted on) by the client.

FIG. 19 relates to a corresponding operation carried out by
subsequent clients. That is to say, the steps of FIG. 19 are
carried out when a further client is registering to join a canvas
which already has one or more registered clients. Steps which
are identical to those described with reference to FIG. 18 will
be shown by the same reference numerals and will not be
described again.

Instead of the step 710 in FIG. 18, a step 711 is carried out
by the server which adds the scene represented by the newly
joining client to the existing canvas, although of course the
canvas itself may be redefined as a new canvas when a scene
joins. An optional step (not shown) may check that a newly
joining scene does not overlap, in respect of its position
within the virtual canvas, an existing scene.

At a step 721, the server updates the definition of hard and
soft edges in relation to the newly added client’s scene and
also all of the previously registered scenes so as to automati-
cally introduce soft edges, for example between adjacent
scenes in the overall canvas.

If'this is the second client to be registered, then at a step 731
the server may set a “random motion cross” task to be added
to the queue for both the original and the newly registered
clients. Again, this is not an essential part of the registration
process. Also, it may instead be initiated by a client rather
than the server.

FIG. 20 schematically illustrates an example of a polling
sequence carried out by a client.

A step 800 represents the client waiting for a “poll tick”,
which is to say that the client waits for the initiation of a
polling operation by the periodic poll timer referred to in the
discussion of the step 780 in FIG. 18. Of course, while the
client is waiting, it would be carrying out other processing
operations such as normal rendering operations and the like.
Indeed, if an interrupt mechanism is used to initiate polling,
normal processing can carry on fully in between polling
operations. When a poll tick is received, the client sends a
polling message to the server to request any tasks in that
client’s queue held by the server.

Atastep 810, the server retrieves all tasks from that client’s
queue. In the present embodiments, once a task has been
retrieved at the step 810 for forwarding to the client, the task
is removed from the client’s queue. So, the tasks that are
retrieved at the step 810 are tasks which have been newly
added since the last polling operation. However, in other
embodiments, tasks which have been completed or which
have been already sent to the client could be retained in the
relevant queue, but this could lead to the queue requiring
excessive data storage or transmission capacity. At a step 820
the retrieved tasks are formatted into an appropriate data
string format for transmission to the client, and are sent as a
list to the client.

At a step 830, the client receives the list of tasks from the
server and executes them, for example in the queue order, that
is to say, the order in which they were first added to the queue
by the server.

This completes the task polling operation from the point of
view of the client. For completeness, FIG. 20 also illustrates
a set of operations 840 relating to the handling of “intent”
messages.

10

15

20

25

30

35

40

45

50

55

60

65

14

In many cases, an intent message will result from the
execution of a task by the client. But in general, an intent
message is generated by the client at a step 850 and is sent to
the server to indicate an intended future action. At a step 860
the server updates the task queues of any and all clients which
are affected by the intended future action.

The polling sequence then repeats according to the interval
set by the periodic poll timer. This interval may be, for
example, 500 ms in a typical system, though in some inter-
active applications to be described below, a shorter period
such as 100 ms may be appropriate for a polling interval.

FIG. 21 schematically illustrates a table of edge data,
which may be in the form set out as an example in FIG. 5.
Each client would normally maintain data defining the edges
of its own scene, in order that the test carried out at the step
410 in FIG. 22 can be handled. In other words, the client
mainly just needs to know whether each of its own edges is
hard or soft.

At the server, however, a global list of edge properties is
maintained, having been set at the step 721 in FIG. 19. The
edge property data includes an identification 870 of each
scene, an identification 880 of each edge within that scene, an
indication 890 of whether each such edge is hard or soft and,
optionally, an indication 900 of the “next” scene or scenes
relevant to a displayed object emerging from that particular
edge. The definitions can be altered in real time or at initiation
of execution of the system, in dependence upon which
devices (including potentially newly registered devices) are
actually present.

In the description above, the interactions have been based
upon a client-server model, in which a server maintains an
overall supervisory role of the canvas and rendering tasks
relating to each client. As an alternative, a “peer-to-peer”
model may be employed in which clients communicate
directly with one another.

In a peer-to-peer arrangement, each client maintains a
specification of the overall canvas and the positions and sizes
of all of the clients within the canvas. When a new client joins
the canvas, the new client sends details of its own position and
size to all existing clients and also requests details in return of
the position and size of those existing clients. A protocol can
be established which (for example) defines that any edge of a
scene which forms or is adjacent to an outer boundary of the
canvas is defined as a hard edge, where any edge of a scene
which is internal to the canvas is defined as a soft edge.

Tasks are transmitted as peer-to-peer messages from an
initiating client to a target client. Time coordination can be
with reference to a shared global time reference, based upon
a time reference at one of the clients such as a first client to
join the canvas, or in other embodiments each pair of clients
could create a time reference between them. In either
instance, time coordination is carried out using the technique
described above.

As an example of how this system operates in respect of a
peer-to-peer model, FIG. 23 schematically illustrates an
edge-crossing process in a peer-to-peer system. In this regard,
FIG. 23 represents operations which correspond to those
described for the client-server model with reference to FIG.
22.

The steps shown in the FIG. 23 relate to operations at a
single client. Corresponding operations would be carried out
at all other clients. For the purposes of discussion, the client
which starts the process shown in FIG. 23 is considered to be
the client which is currently rendering and displaying the
displayed object 80.

A step 401 corresponds to the step 400 in FI1G. 22, in which
the current path of the displayed object 80 is extrapolated to

US 9,323,495 B2

15

meet an edge of the scene corresponding to the current client.
A step 411 corresponds to the step 410 of FIG. 22, at which a
check is made as to whether the intersected edge is a hard or
a soft edge. If it is a hard edge, then at a step 421, which
corresponds to the step 420 in FIG. 22, a reflection is gener-
ated and a new path established. Control returns to the step
401.

I, however, the detected edge is a soft edge, then the client
determines which scene the displayed object 80 will enter
when it emerges from that soft edge. This is carried out at a
step 910 and makes use of the data stored at each client
defining the position and size of that and other scenes within
the overall canvas. An optional check can then be carried out
atastep 920 as to whether the edge of the next scene which the
displayed object will intersect is itself a hard or a soft edge. In
principle, if the rules described above are followed by each
client, then the relevant edge of the next scene should by
definition be a soft edge. Or a default could be set that any
edge is considered “soft” for the purposes of incoming
objects; the hard/soft distinction applying only to outgoing
objects. But if for any reason it is a hard edge, a reflection path
is derived at a step 930 and control returns to the step 401.

Assuming, however, that the definitions have operated cor-
rectly and the recipient edge of the next scene is indeed a soft
edge, or in the case where the step 920 is omitted altogether,
the client sends a message (at a step 940) to the next client
defining the path of the displayed object (for example, in the
coordinate system of the canvas) and giving time information
which the next client can use to determine when the displayed
object will intersect the next scene. The time information can
be, for example, a reference time at which the displayed
object is or will be at a particular point along its path with
reference to the global coordinate system.

Optionally, the message sent at the step 940 can include
data defining the content of the displayed object. The purpose
of this optional arrangement will be described below.

The current client continues to render the displayed object
until it leaves the scene, but as far as the message handling
process of FIG. 23 is concerned, the current client simply
waits at a step 950 for an incoming message defining the next
occasion on which the displayed object will enter the scene
rendered by the current client.

FIG. 24 schematically illustrates the displayed object 80
traversing a first scene 960 and substantially simultaneously
meeting both a hard edge 970 and a soft edge 980, or in other
words, intersecting at a corner of the scene. Note that in
exemplary embodiments, corners are not defined as such—
only edges are defined. These techniques define example
ways of dealing with a path that could potentially intersect
two edges.

In the example shown in FIG. 24, the path 990 of the
displayed object 80 intersects with the corner of the first scene
960. So this is a special case of handling the process steps
described above; if the path 990 passed just to the right of the
corner, the path would transit through the soft edge 980 and
the reflection would take place at the upper hard edge 1000 of
the next scene 1010. Similarly, if the path 990 met the hard
edge 970 just to the left of the corner, a reflection would take
place and the path would transit through the soft edge 980.
But if the path 990 hits the corner exactly, this must be
handled so as to provide a sensible outcome, which in this
case is a reflection along a path 1020 such that the angle of
incidence to the upper edge of the canvas is the same as the
angle of reflection.

This outcome can be obtained in various different ways.
One example is to include a “corner detection” step into the
steps of FIG. 22 or 23 so as to derive the new path 1020 in

10

15

20

25

30

35

40

45

50

55

60

65

16

instances where the displayed object hits an exact corner
between a hard and a soft edge. Another option is to deal with
components of the motion of the displayed object which are
relevant to the orientation of the edge which is being inter-
sected, so that a horizontal component of motion is reversed
when the displayed object meets a hard vertical edge but
remains unaltered when the displayed object meets a soft
vertical edge, and a vertical component of motion is reversed
when the object meets a hard horizontal edge but remains
unaltered when the object meets a soft horizontal edge.

FIG. 25 schematically illustrates a further special case, ina
more complicated canvas such that an object meets a corner
boundary between two diagonally adjacent scenes 1030,
1040.

Here, in the instance that the object directly intersects with
the corner 1050, there are two possible reasonable outcomes:
one is that the object continues on its previous path along a
path 1060. The other is that the object is reflected, as though
from the left-hand hard edge 1070 along a reflection path
1080. In the special case of this type of diagonally adjacent
scene and an object exactly intersecting the corner 1050, the
choice between these two outcomes can be predetermined
(for example) by convention.

As mentioned above, at least some of the clients connected
to the network 60 may have user interface controls which are
operable by the user. These can be used to alter the path,
position, speed or direction of motion of the displayed object
80 and/or to alter the rendered appearance of the displayed
object 80. Note that this feature applies to the client-server or
the client-client arrangements described in the present appli-
cation.

A set of steps relevant to this process is shown in FIG. 26.
Referring to FIG. 26, at a step 1100, the operation (by a user)
of'a user interface control is detected at a particular client.

Although it is possible to allow the operation of a user
interface control at one client to affect a displayed object
currently displayed by another client, this is not the way in
which the present embodiments operate. Instead, at a step
1110 a first detection is made as to whether the displayed
object is currently within the scene being displayed by that
client. If not, no action is taken over the detected user inter-
face control (or at least, no action relevant to the movement or
rendering of the currently displayed object 80) and control
returns to the step 1100 to await the next user interface control
operation.

On the other hand, if the object is currently displayed in the
scene handled by this client, then there are two types of
operation considered here which are relevant to the currently
displayed object. A first type of operation will be referred to
as a “generic” instruction. Here, the concept represented by
the word “generic” is that the user interface instruction to be
acted upon does not refer to a particular location of the cur-
rently displayed object within the scene. So, examples of
operations referred to here as being generic instructions
include:

change the colour of the displayed object

substitute or augment the displayed object with a photo-

graph, such as a photograph taken in response to the user
interface command by a camera forming part of the
current client

display certain wording or other information as part of the

displayed object

pause the displayed object’s motion

initiate a new random path for the displayed object starting

from its current position in the scene

All of these operations can be initiated irrespective of the
current position of the displayed object within the scene

US 9,323,495 B2

17

handled by the current client. Such operations are executed at
a step 1120 in FIG. 26. Execution of the operation, in a
client-server system, may involve the current client sending
an “intent” message to the server indicating changes to the
appearance and/or motion of the object, if appropriate accord-
ing to the motion path of the object. This message is then
propagated to other clients by the task queue system
described above.

In this type of interactive system, it is useful to achieve a
relatively low latency in communications between the server
and the clients, for example a few milliseconds. It is also
useful to carry out the regular polling operations more fre-
quently than in a non-interactive system. A typical period
over which the human psycho-visual struggles to detect ren-
dering errors is 100 ms, so if a polling period (a predetermined
period which lies between successive occurrences of the cli-
ent computer receiving path data) of around 100 ms is used,
any changes to the motion of the displayed object which are
relevant to adjacent scenes can be propagated in time to avoid
a subjectively disturbing display error from the point of view
of the user. Also, with regard to avoiding subjective distur-
bance to the viewer, in embodiments of the disclosure any
changes to the motion of the displayed object are introduced
over a predetermined delay period such as 100 ms or 200 ms
(at least the period between successive path data). For
example, if the object’s motion is paused as a result of a user
interface command, rather than stopping instantaneously the
object is slowed steadily (or steadily but after an initial delay
during which it is not decelerated) from its current speed to a
zero speed over the course of the predetermined delay period
mentioned above. A similar steady change can be applied in
the case of a direction alteration, so that instead of an abrupt
turn to the new direction the object is steadily turned over the
course of the predetermined period.

Other user interface commands are however relevant to the
object’s current location within the scene. An example here is
relevant to a client having a touchscreen; if the user touches
the touchscreen at a point which overlaps (or, in embodiments
of the disclosure, is within a threshold distance of) the cur-
rently displayed position of the object, this could provide the
user with control over the motion of the object. For example,
the user could pause and hold the object and then apply a
“flick” motion with the finger (a rapid motion in a particular
direction while retaining contact with the touchscreen) to
send the object on a new path within the canvas. However, if
the user touches the screen away from the currently displayed
object, such a control would not be executed. So, at a step
1130, a detection is made as to whether a control has been
executed using the user interface at the location of the object,
possibly including the tolerance or threshold distance men-
tioned above. If not, then control is returned to the step 1100.
However, if a user interface operation has been made at the
object’s current location, then that instruction is acted upon at
a step 1140.

The tolerance or threshold distance away from the object,
within which a touch by the user is detected as a touch of the
object, does not need to be uniform around the object. The
tolerance can be greater along the direction of motion of the
object than perpendicular to the direction of motion. As a
further alternative, the tolerance can be greater in a direction
opposite to the current motion of the object than in other
directions, so allowing the user to touch “where the object
was” in case the user has slow reactions.

FIG. 27 schematically illustrates an example of a display
location-specific user interface control. In the schematically
depicted example of FIG. 27, the displayed object 80 is car-
rying out a transit between a first scene 1150 and a second

10

15

20

25

30

35

40

45

50

55

60

65

18

scene 1160, by crossing the soft edge boundary between the
two scenes. The scene 1160 is rendered by a client which
includes a touchscreen interface. So, the user can touch the
location on the scene 1160 with the user’s finger 1170. At the
step 1140 described above, this user interface operation is
acted upon according to the convention established with that
system, which in this example is that the object is paused in its
motion by the user’s touch. As discussed above, the object
might not be paused instantaneously but could instead slow
down linearly or nonlinearly over, say, 200 ms. This is par-
ticularly relevant in this example, because at the time that the
user touches the object a part of the object is displayed by the
scene 1150 and another part by the scene 1160. There is a
delay of at least the polling period for a message to reach the
client controlling the scene 1150, so even if the client for the
scene 1160 stops the object straightaway, the part of the object
being displayed by the scene 1150 would carry on moving for
at least another 100 ms. Accordingly, instead of an instanta-
neous halt, the object is slowed over the predetermined period
mentioned above.

The systems described above have operated with respect to
a two-dimensional canvas formed of multiple two-dimen-
sional scenes. An alternative arrangement will now be
described which operates in three dimensions.

In order to operate with a third dimension (depth) a tech-
nique is required to represent depth on a display. There are
two basic ways of achieving this. One is to use a so-called 3-D
display in which separate respective images are sent to each
of the user’s eyes. 3-D display techniques are known, and
technology for splitting the two images includes polarisation-
based separation, time-based separation (using technology
such as alternate shutter glasses for the user to wear) and
colour-based separation in which the user views the images
through different respective colour filters for each eye. By
varying the apparent parallax between the pairs of images, a
simulation of depth can be displayed. Using this technology,
apparent depth behind and in front of the plane of the display
screen can be simulated. The other basic way of representing
depth is to use a two-dimensional display but to vary the
image size of the object being displayed, so that it is displayed
with a larger size to represent a depth position in front of the
plane of the screen and a smaller size to represent a depth
position behind the plane of the screen.

If a three-dimensional approach is used, it is possible to
define a three-dimensional canvas and, within such a canvas,
to define three-dimensional scenes as the contributions from
each display within the overall system. FIGS. 28A-29C sche-
matically illustrate possible three-dimensional scenes. In the
examples of FIGS. 28A and 28B, the scene is represented as
a cuboid shape 1200 in a virtual space, with the lateral (side-
to-side, up and down) extent of the cuboid corresponding to
the lateral extent of the display screen used to display that
scene. The extent of the cuboid in the depth direction is a
matter for the system designer to establish. In the notation of
FIGS. 28A-28C, the z direction represents depth and points
from the upper right to lower left of the isometric projection
used to represent the cuboids. A depth position towards the
upper right of the z axis represents a depth which is far away
from the viewer, and a depth position towards the lower left of
the z-axis represents a depth position closer to the viewer.

Within the respective scenes, it is possible to choose a
depth position for the plane of the screen. In the example of
FIG. 28A, a depth position 1210 at the rear of the cuboid-
shaped scene has been chosen, so that representations of the
moving object 80 (which can now represent a three-dimen-
sional object) are provided on or in front of the plane of the
screen. In FIG. 28B, the plane of the screen lies at a depth

US 9,323,495 B2

19

position at neither the front nor the back of the cuboid-shaped
scene, so that depths behind and in front of the plane of the
screen can be represented within the overall three-dimen-
sional canvas. FIG. 28C represents a rather different option,
noting that when working in three dimensions, the display
screens on which the scenes are displayed do not necessarily
need to lie in the same plane; in this example a display screen
has been set so that it lies along an oblique plane 1230 with
respect to depth, ranging from a front position 1240 to a rear
depth position 1250.

FIG. 29 schematically illustrates three such 3-D scenes
1260, 1270, 1280 arranged adjacent to one another so as to
form a 3-D canvas 1290. An example path 1300 of a moving
displayed object through the 3-D canvas 1290 has the object
changing in depth as well as changing in the X and Y direc-
tions during its reversal of the canvas.

In the context of a 3-D canvas, rather than defining hard and
soft edges it is appropriate to define hard and soft faces of the
individual 3-D scenes. In the example shown in FIG. 29, the
outermost faces of the canvas are treated as hard faces from
which the moving object 80 will be reflected, whereas the
faces by which one scene abuts another scene are treated as
soft faces through which the moving object 80 will pass.
When the object 80 does reach a hard face, a reflection
according to the normal (simulated) laws of physics can take
place.

FIG. 30 schematically illustrates two 3-D scenes 1310,
1320 which are positioned non-adjacent to one another but
which, together, form a 3-D canvas. A displayed object 80 is
shown following a path 1330 in three-dimensional space
which passes out of the scene 1310 through a soft face and
into the scene 1320, also through a soft face.

The calculations and server/client operations required to
implement the three-dimensional system correspond to those
employed in the two-dimensional system described above.

The actual display screens used to represent the three-
dimensional scenes can be 3-D displays or 2-D displays. As
described above, in a 3-D display, the conventional 3-D dis-
play technology can be used to represent simulated depth. In
a2-Ddisplay, depth can be represented by simply a change in
display size of the object. In this way, a mixture of 2-D and
3-D displays can be employed. In a customer-demonstration
system, this would have the particular advantage of showing
the customer the added value obtained through purchasing a
3-D display.

FIG. 31 schematically illustrates a process for position
detection at a client device in a client-server system. As men-
tioned above, at least some of the clients may be equipped
with a location detector (300, FIG. 11) which can detect an
absolute position or changes in position of the client. If an
absolute position is detectable, this can be used in place of the
scene position information which may be transmitted to the
server as part of the initial registration of the clients, as
described above. Instead, position information can be trans-
mitted to the server by means of messages such as intent
messages, so that any changes in position of a client can be
reflected in a change of the corresponding virtual position of
that client’s scene within the overall canvas. If only changes
in position are detectable at high resolution (a resolution of
less than the physical size of the display screen so maybe a
few centimeters) then the initial registration can take place as
described above with an initial position, and then changes can
be transmitted to the server to allow modifications from that
initial position.

So, referring to FIG. 31, at a step 1400, the client device
detects its position or change in position. At a step 1410 that
position or change in position is transmitted to the server, and

10

25

30

40

45

55

20

atastep 1420 the server makes a corresponding adjustment to
the virtual position of that client’s scene within the overall
canvas. The process of FIG. 31 repeats whenever a new posi-
tion or a change in position is detected. This arrangement
allows one or more of the client devices to be physically
moved around, but for the multiscreen animation to continue
based on the current physical positions of the client devices.

FIG. 32 schematically illustrates a similar process but for
use in a peer-to-peer system. At a step 1500 a client device
detects its position or a change in its position. At a step 1510
the client device converts that new position or change in
position to a change in the virtual position within the canvas
of the scene handled by that client and transmits it to other
clients (as well as storing it itself) and at a step 1520 the other
client devices store the change in that client’s canvas position
for use in subsequent path calculations.

FIG. 33 schematically illustrates an object scaling process.
Referring back to FIG. 2, in the example system shown, the
various physical display screens used to represent the differ-
ent scenes have different respective sizes. It is also likely that
they will have different respective pixel resolutions. But it is
desirable that the displayed object 80 appears to have the
same real (physical) size whichever device it is displayed on.

Accordingly, in FIG. 33, when a client is first instructed by
the server or requested by another client to display an object
80, it receives a definition of that object from the server or
from the other client at a step 1600. With reference to a stored
value 1610 indicative of the pixel resolution of the current
client, the client scales the object according to the pixel dis-
play resolution of that client computer device at a step 1620 so
as to display it at a required physical size, in order that the
object is displayed at a consistent physical size amongst the
client computer devices.

In the embodiments described above, various features are
implemented by data processing apparatus or computers run-
ning appropriate software. It will be appreciated that such
software, method steps implemented by such software or as
part of a corresponding process, along with a providing
medium such as a storage medium by which such software is
provided are considered as embodiments of the present dis-
closure. An example of an appropriate storage medium is a
non-transitory machine-readable storage medium such as a
magnetic or optical disc medium or a non-volatile memory
medium such as a flash memory.

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority of EP patent appli-
cation No. 12 159 994.8 filed on 16 Mar. 2012, the entire
contents of which are incorporated herein by reference.

The invention claimed is:

1. A display system for displaying a moving object travers-
ing a virtual display region, the system comprising:

a group of two or more client networked computer devices
each being configured to display a respective portion of
the virtual display region, in which each respective por-
tion is defined by a set of edges, each edge being clas-
sified as a hard edge, from which the moving object is
reflected, or a soft edge through which the moving object
is allowed to pass, the system being configured to rede-
fine whether an edge of at least one of the portions is a
hard or a soft edge independently of a change in number
or relative positions of the respective portions of the
virtual display region; and

circuitry, associated with each client computer device, con-
figured for defining a path of the moving object with

US 9,323,495 B2

21

respect to the portion of the virtual display region which
is displayed by that client computer device;

the circuitry being configured, when the circuitry defines a
path which intersects a soft edge of that client computer
device’s portion of the virtual display region, to transmit
data defining the path of the moving object for use at
least by another client computer device which displays
the next portion of the virtual display region which will
lie within the detected path of the moving object.

2. A system according to claim 1, the system being oper-
able in response to a change in the number or relative con-
figuration of client computer devices forming the group of
devices, to redefine whether said edge of said at least one of
the portions is a hard or a soft edge.

3. A system according to claim 1, the system being oper-
able, in response to a data processing operation being carried
out at a client computer device, to redefine a soft edge of at
least that portion displayed by that client computer device as
hard edge.

4. A system according to claim 1, in which the client
computer devices are operable:

to establish a shared reference time;

to define the path data with reference to the shared refer-
ence time; and

to render the moving object according to the shared refer-
ence time.

5. A system according to claim 4, comprising a server

computer device operable to define the shared reference time.

6. A system according to claim 5, in which:

a client computer device is operable to detect a difference
between an internal time at that client computer device
and the shared reference time at the server by transmit-
ting a message to the server;

the server is operable to send the message back to the client
computer device; and

the client computer device is operable to detect the transit
time for the message and to detect the time, at the server
according to the shared reference time, when the mes-
sage was sent back to the client computer device.

7. A system according to claim 5, in which:

the server computer device is operable to maintain data
defining the size and relative position of each portion
within the virtual display region;

the client computer devices are operable to transmit the
path data to the server computer device; and

the server computer device is operable to detect, from the
path data, which client computer device displays the
next portion of the virtual display region which will lie
within the detected path of the moving object and to
provide path data to the next client computer device to
initiate rendering of the moving object by that next client
computer device.

8. A system according to claim 7, in which the server
computer device is operable to receive the path data from a
client computer device according to a coordinate system local
to the transmitting client computer device and to translate the
path data into the coordinate system local to the next client
computer device for provision to that next client computer
device.

9. A system according to claim 7, in which:

the server computer device is operable to maintain a queue
of'tasks for each client computer device, and to add path
data for a next client computer device to the queue for
that device; and

each client computer device is operable to poll the server to
request data defining any tasks held in the queue for that
client computer device.

20

35

40

45

22

10. A system according to claim 1, in which each client
computer device is operable to scale the image of the object
according to the pixel display resolution of that client com-
puter device, so that the object is displayed at a consistent
physical size amongst the client computer devices.

11. A system according to claim 1, in which at least one of
the client computer devices comprises a user control which,
when operated by a user while the moving object is currently
displayed by that client computer device, is operable to cause
that client computer device to alter one or more of the ren-
dered appearance, the position, the speed and the direction of
motion of the moving object.

12. A system according to claim 11, in which, when the
user control is operated to change the speed or direction of
motion of the moving object, the client computer device is
operable to apply a delay period before fully implementing
the required change in speed or direction.

13. A system according to claim 12,

in which, for each client computer device, at least a prede-

termined period lies between successive occurrences of
that client computer receiving path data; and

in which the delay period is greater than or equal to the

predetermined period.

14. A system according to claim 1, in which the virtual
display region is a three-dimensional display region, and at
least one of the client computer devices comprises a three-
dimensional display for displaying a respective portion of the
virtual display region.

15. A client computer device for use in a display system for
displaying a moving object traversing a virtual display region
and having two or more client computer devices each being
configured to display a respective portion of the virtual dis-
play region, in which each respective portion is defined by a
set of edges, each edge being classified as a hard edge, from
which the moving object is reflected, or a soft edge through
which the moving object is allowed to pass, the system being
configured to redefine whether an edge of at least one of the
portions is a hard or a soft edge independently of a change in
number or relative positions of the respective portions of the
virtual display region;

the client computer device comprising:

circuitry, associated with each client computer device, con-

figured for defining a path of the moving object with
respect to the portion of the virtual display region which
is displayed by that client computer device;

the circuitry being configured, when the circuitry defines a

path which intersects a soft edge of that client computer
device’s portion of the virtual display region, to transmit
data defining the path of the moving object for use at
least by another client computer device which displays
the next portion of the virtual display region which will
lie within the detected path of the moving object;

the circuitry being further configured to send a message to

the system to redefine a soft edge of at least that portion
displayed by that client computer device as a hard edge
independently of the change in number or relative posi-
tions of the respective portions of the virtual display
region.

16. A method of displaying a moving object traversing a
virtual display region using two or more client computer
devices each being configured to display a respective portion
of'the virtual display region, in which each respective portion
is defined by a set of edges, each edge being classified as a
hard edge, from which the moving object is reflected, or a soft
edge through which the moving object is allowed to pass, the
method comprising:

US 9,323,495 B2

23

each client computer device defining a path of the moving
object with respect to the portion of the virtual display
region which is displayed by that client computer
device;

when a path is defined which intersects a soft edge of that
client computer device’s portion of the virtual display
region, transmitting data defining the path of the moving
object for use at least by another client computer device
which displays the next portion of the virtual display
region which will lie within the detected path of the
moving object; and

providing functionality to redefine whether an edge of at
least one of the portions is a hard or a soft edge indepen-
dently of a change in number or relative positions of the
respective portions of the virtual display region.

#* #* #* #* #*

10

24

